
et
International Journal on Emerging Technologies 4(2): 124-127(2013)

ISSN No. (Print) : 0975-8364
ISSN No. (Online) : 2249-3255

A Survey of Mutual Exclusion Algorithms in Distributed
Computing

Rahul Singh*, Jagrati Malviya** and Kanchan Jha**
*Department of Information Technology, BUIT BU Bhopal, (MP)

**Department of Computer Science and Engineering, BUIT BU Bhopal, (MP)

(Received 15 October, 2013 Accepted 26 December, 2013)

ABSTRACT: Over the last 10 years distributed computing systems have attracted a great deal of
attention. The problem of mutual exclusion in distributed systems has attracted considerable
attention over the last decades. The mutual exclusion problem requires that, at a time, only one of the
deserving processes be allowed to enter its critical section (CS). Number of solutions has been
proposed to the mutual exclusion problem in distributed systems. Different algorithms have used
different techniques to achieve mutual exclusion and have different performances. In this paper, we
present a survey of different approaches such as token based approach, permission based approach
and hybrid approach.

Keywords: Distributed System, Mutual Exclusion, Critical section.

I. INTRODUCTION

A distributed system is a collection of autonomous
computers connected via a communication
network. There is no common memory and
processes communicate through message passing.
One of the most important purposes of the
distributed systems is to provide an efficient and
convenient environment for sharing of resources.
They also provide computational speedup and
better reliability [1]. A distributed system consists
of a collection of geographically dis- persed
autonomous sites connected by a communication
network. The sites have no shared memory and
communicate with one an- other by passing
messages [2].
Many operations in a distributed system require
mutual exclusion to guarantee correctness.
Distributed systems usually have some shared
resources to which concurrent access is not
permitted. Shared resources are usually accessed
through procedures called Critical Sections (CS).
At any time, only one site is petted to execute the
CS. A Mutual Exclusion Algorithm defames the
rules to coordinate entry into the CS and mediate
conflicts when two or more sites desire to execute a
CS at the same time. In the absence of shared
memory, the algorithms depend on message ex-
changes between sites to coordinate entry into the
CS [3].

II. MUTUAL EXCLUSION IN DISTRIBUTED
COMPUTING SYSTEMS

A distributed computing system is a collection of
autonomous computing sites that do not share a
global or common memory and communicate
solely by exchanging messages over a
communication facility.
In a distributed computing system any given site
(also referred to as "node") has only a partial or
incomplete view of the total system and a system-
wide common clock does not exist. Processes must
share common hardware or software resources,
cooperating in such a way that they can work in
parallel and independently of each other. The
access to a shared resource must be synchronized
to ensure that only one process is making use of the
resource at a given time.
Each process has a code segment, called a critical
section, in which the process can access the shared
resource. The problem of coordinating the
execution of critical sections by each process is
solved by providing mutually exclusive access in
time to the critical section. A process is said to
execute repeatedly a sequence of non-critical
section code and critical section code segments,
each of finite execution time. Each process must
request permission to enter its critical section and
must release it after it has completed its execution.

Singh, Malviya and Jha 125

A mutual exclusion algorithm must satisfy the
following requirements:

1. At most one process can execute its critical
section at a given time.
2. If no process is in its critical section, any
process requesting to enter its critical section must
be allowed to do so in finite time.
3. When competing processes concurrently
request to enter their respective critical sections,
the selection cannot be postponed indefinitely.
4. A requesting process can not be prevented by
another one to enter its critical section within a
finite delay.
To simplify, an algorithm must provide mutually
exclusive access to a resource, ensure deadlock
freedom, ensure starvation freedom, and must
provide some fairness in the order that requests
are granted.
Two approaches can be used to implement a
mutual exclusion mechanism in a distributed

computing system. In a centralized approach, one
of the nodes functions as a central coordinator.
Processes ask only the coordinator for permission
to enter their critical section. Only when a
requesting process receives permission from the
coordinator can it proceed to enter its critical
section.
The central coordinator is fully responsible for
having all the information of the system and for
granting permission to make use of a shared
resource.
In a distributed approach, the decision making is
distributed across the entire system and the
solution to the mutual exclusion problem is far
more complicated because of the difficulty to
obtain a complete knowledge of the total system.
This is due to the lack of a common shared
memory, a common physical clock and because of
unpredictable message delay.

Fig 1: Classification Tree for DME Algorithm.

III. BASIC APPROACHES FOR THE
DESIGN OF DISTRIBUTED MUTUAL
EXCLUSION ALGORITHMS

Distributed mutual exclusion algorithms can be
classified into two groups by a basic principle in
their design. These two groups are token-based
algorithms and permission-based algorithms. The
basic principle for the design of a distributed
mutual exclusion algorithm is the way in which
the right to enter the critical section is formalized
in the system.

A. The token-based approach
In the token-based group the right to enter a
critical section is materialized by a special object,
namely a token. The token is unique in the whole
system. Processes requesting to enter their critical
section are allowed to do so when they possess the
token. The token gives to a process the privilege
of entering the critical section. A token is a
special type of message. The singular existence of
the token implies the enforcement of mutual
exclusion. Only one process, the one holding the
token, is allowed to enter to its critical section.

Singh, Malviya and Jha 126

At any given time the token must be possessed by
one process at most. Granting the privilege to enter
the critical section is performed by a single
process, which is the current owner of the token.
This process chooses the next token owner and
sends it the token. A distinction has to be made
between the mechanisms used to move the token
among the processes in the system. If processes are
logically organized in a direct ring structure, the
token can travel around the ring from process to
process to give them the right to enter the critical
section. If a process receives the token and it is
interested in the critical section (CS), it can
proceed to its execution. After the process exits its
CS the token is released to circulate again. On the
other hand, if the process is not interested in its CS
it just passes the token to the next node in the
logical ring. If the ring is unidirectional, starvation
freedom is ensured. Under light load this method
has a high cost since the token message circulates
even if no process wants to enter the CS, but it is
very effective under high load.
Another method to move the token in the system is
by asking for it when a process wants to enter its
CS. A requesting process sends a request message
to the token holder and waits for the token arrival.
After completing the execution of its CS, the
process holding the token chooses a requesting
process and sends it the token. If no process wants
to use the token, the token holder does not need to
send the token away. Using this method a major
concern is how to locate the token holder in order
to minimize message exchanges originated by a
requesting process.
The token-based approach is highly susceptible to
the loss of the token, since this can induce a
deadlock situation. Also, problems can occur with
the existence of duplicated tokens. Complex token
regeneration must be executed to ensure the
uniqueness of the token.

B. The permission-based approach
In the permission-based group the right to enter a
critical section is formalized by receiving
permission from a set of nodes in the system. A
process wishing to enter its critical section asks the
others to give it their permission to proceed; and
then it waits until these permissions have arrived.
A process enters its CS only after receiving
permission from all nodes in a set.

Non-requesting processes send their permission to
requesting ones. Each process may grant its
permission to only one process at a time. A priority
or an order of events has to be established between
competing requesting processes so only one of

them receives permission from all other nodes in
the set.
Only one process, the one that has received
permission from all members of a given set of
nodes, is allowed to enter the critical section. This
enforces the requirement for mutual exclusion.
Granting the privilege to enter the critical section is
performed by the set of nodes that send their
permission to requesting processes. Conflicts are
solved by a priority or an order of events
mechanism.
The problem of finding a minimal number of nodes
from which a process has to obtain permission to
enter its CS has to be considered. This can be
translated as to how many rights a process has to
collect in order to proceed to the execution of the
critical section. Many protocols have been
developed to find a majority or quorum of
processes from which rights have to be collected.
The solution to this problem has a direct impact in
the cost of messages exchanged per mutual
exclusion invocation [4]..

C. Hybrid Approach
A hybrid approach to mutual exclusion is proposed
to minimize both message traffic and time delay at
the same time. A hybrid mutual exclusion
algorithm using the release local sites first mode,
the requesting group semantics, and the requesting
sequence is found to be an efficient way to control
the interaction.

IV. DESCRIPTION OF TOKEN-BASED
ALGORITHMS

In this algorithm, a completely different approach
to achieving mutual exclusion in a distributed
system is introduced. Here we have a specific
network topology with no inherent ordering of the
processes. In software, a logical ring is constructed
in which each process is assigned a position in the
ring. The ring position may allocate in numerical
order of network addresses or some other means. It
dose not matter what the ordering is. All that
matter is that each process who is next in line after
itself. When the ring is initialized, process 0 is
given a token. The token circulate around the ring.
It is passed from process k to process k+1, in point-
to-point messages. When a process acquires the
token from its neighbor, it checks to see if it is
attempting to enter a critical region. If so, the
process enters the region, dose all the work it needs
to, and leaves the region. After it has exited, it
passes the token along the ring. It is not permitted
to enter a second critical region using the same
token.

Singh, Malviya and Jha 127

If a process is handed the token by its neighbor and
is not interested in entering in critical region, it just
passes it along. As a consequence, when no
processes want to enter any critical regions, the
token just circulates at high speed around the ring.
As usual, this algorithm has problems too. If the
token is ever lost, it must be regenerated. In fact,
detecting that it is lost is difficult, since the amount
of time between successive appearances of the
token on the network is unbounded. The fact that
the token has not been spotted for an hour dose not
mean that it has been lost; somebody may still be
using it. The algorithm also runs in trouble if a
process crashes, but recovery is easier than in the
other cases [1]. Deadlock occurs if no node is in its
critical section and there are two or more processes
wishing to enter the CS, but they are not able to do
so. This could occur essentially if the token is lost
or does not eventually reach a node which has
requested it. The loss of the token cannot be easily
distinguished from system connectivity loss. The
existence of more than one token would violate the
mutual exclusion requirement, thus the detection of
a token loss is not a trivial task [4].
Token based algorithm are broadcast based or
logical structure based,static or dynamic. Some
examples of token based algorithm are Ricart-
Agrawala algorithm, Suzuki-Kazami algorithm,
Mizuno-Neilsen-Rao, Neilsen-Mizuno algorithm,
Helary-Plouzeau-Raynal algorithm, Raymond’s
algorithm, Singhal’s algorithm, Naimi-Trehel
algorithm, Mishra-Srimani. Mishra and Srimani
algorithm,Nishio-Li-Manning algorithm.

V. DESCRIPTION OF PERMISSION-BASED
ALGORITHMS

Permission-based algorithms require rounds of
message exchange among the nodes to obtain the
permission to execute CS. The basic idea on which
permission-based algorithms are based is as
follows: When a process wants to enter its CS, it
asks other nodes for their permission. A process on
receiving a request grants its permission if it is not
interested in CS. If it is interested in CS, the
priority of the incoming request is established
against its own request. Generally, priority
decisions are made using timestamps [5]. Some
examples of token based algorithm are Lamport’s
algorithm, Ricart-Agrawala algorithm, Carvalho-
Roucairol algorithm, Ricart and Agrawala
algorithm, Raynal’s algorithm, Maekawa’s

algorithm, Sanders’ algorithm, Agrawal-El Abbadi
algorithm, Singhal’s algorithm.

VI. CONCLUSION

In this study, we have presented many distributed
mutual exclusion algorithms. And principles and
characteristics have been described, and their cost
in the number of messages exchanged for an entry
to a critical section (CS) to take effect has been
shown.
We find that different algorithms give different
performance capabilities with respect to different
metrics. These algorithms can be evaluated on the
basis of performance measures like message
complexity, delay of synchronization, availability,
communication delay, etc. An algorithm may be
optimal with respect to another of these parameters
but may show poor performance as regards
another. Which algorithm to choose for any
particular application is an important decision for
system designer? This is totally depending on a
designer, for choosing an algorithm.

RFERENCES

[1]. Mohammad Rastegari and Amir Masoud
Rahmani. Solving Critical Section problem in
Distributed system by Entangled Quantum bits
Department of Computer Engineering, University
of Science and Research, Tehran February, 2008.

[2]. Ye-In Chang, Mukesh Singhal, and Ming T.
Liu. A Hybrid Approach to Mutual Exclusion for
Distributed Systems, Dept. of Computer and
Information Science The Ohio State University Col
UmbuS, OH 43210-1277.
[3]. Supriya Madhuram and Anup Kumar, A
Hybrid Approach for Mutual Exclusion in
Distributed Computing Systems Engineering
Mathematics and Computer Science University of
Louisville, Louisville, KY 40292.
[4]. A Survey of Distributed Mutual Exclusion
Algorithms Martin G. Velazquez Technical Report
CS-93-116 September 6, 1993.
[5]. P.C. Saxenaa and J. Raib. A survey of
permission-based distributed mutual exclusion
algorithms, A School of Computer and Systems
Sciences, Jawaharlal Nehru University, New Delhi,
India bDepartment of Mathematics, P.G.D.A.V.
College (Eve), University of Delhi, New Delhi,
India Received 24 May 2002; received in revised
form 8 October 2002; accepted 11 October 2002.

